MATLAB层次聚类分析法

转自:http://blog.163.com/lxg_1123@126/blog/static/74841406201022774051963/

层次聚类是基于距离的聚类方法,MATLAB中通过pdist、linkage、dendrogram、cluster等函数来完成。层次聚类的过程可以分这么几步:

(1) 确定对象(实际上就是数据集中的每个数据点)之间的相似性,实际上就是定义一个表征对象之间差异的距离,例如最简单的平面上点的聚类中,最经常使用的就是欧几里得距离。

这在MATLAB中可以通过Y=pdist(X)实现,例如

>> X=randn(6,2)

X =

-0.4326 1.1892

-1.6656 -0.0376

0.1253 0.3273

0.2877 0.1746

-1.1465 -0.1867

1.1909 0.7258

>> plot(X(:,1),X(:,2),'bo') %给个图,将来对照聚类结果

[转载]MATLAB层次聚类分析法(转)

>> Y=pdist(X)

Y =

Columns 1 through 14

1.7394 1.0267 1.2442 1.5501 1.6883 1.8277 1.9648 0.5401

2.9568 0.2228 1.3717 1.1377 1.4790 1.0581

Column 15

2.5092

例子中X数据集可以看作包含6个平面数据点,pdist之后的Y是一个行向量,15个元素分别代表X的第1点与2-6点、第2点与3-6点,......这样的距离。那么对于M个点的数据集X,pdist之后的Y将是具有M*(M-1)/2个元素的行向量。Y这样的显示虽然节省了内存空间,但对用户来说不是很易懂,如果需要对这些距离进行特定操作的话,也不太好索引。MATLAB中可以用squareform把Y转换成方阵形式,方阵中<i,j>位置的数值就是X中第i和第j点之间的距离,显然这个方阵应该是个对角元素为0的对称阵。

>> squareform(Y)

ans =

0 1.7394 1.0267 1.2442 1.5501 1.6883

1.7394 0 1.8277 1.9648 0.5401 2.9568

1.0267 1.8277 0 0.2228 1.3717 1.1377

1.2442 1.9648 0.2228 0 1.4790 1.0581

1.5501 0.5401 1.3717 1.4790 0 2.5092

1.6883 2.9568 1.1377 1.0581 2.5092 0

这里需要注意的是,pdist可以使用多种参数,指定不同的距离算法。help pdist。

另外,当数据规模很大时,可以想象pdist产生的Y占用内存将是很吓人的,比如X有10k个数据点,那么X占10k*8*2Bytes=160K,这看起来不算啥,但是pdist后的Y会10k*10k/2*8Bytes=400M。怕了把,所以,废话说在前面,用MATLAB的层次聚类来处理大规模数据,大概是很不合适的。

(2) 确定好了对象间的差异度(距离)后,就可以用Z=linkage(Y)来产生层次聚类树了。

>> Z=linkage(Y)

Z =

3.0000 4.0000 0.2228

2.0000 5.0000 0.5401

1.0000 7.0000 1.0267

6.0000 9.0000 1.0581

8.0000 10.0000 1.3717

对于M个元素的X,前面说了Y是1行M*(M-1)/2的行向量,Z则是(M-1)*3的矩阵。

Z数组的前两列是索引下标列,最后一列是距离列。例如上例中表示在产生聚类树的计算过程中,第3和第4点先聚成一类,他们之间的距离是0.2228,以此类推。要注意的是,为了标记每一个节点,需要给新产生的聚类也安排一个标识,MATLAB中会将新产生的聚类依次用M+1,M+2,....依次来标识。比如第3和第4点聚成的类以后就用7来标识,第2和第5点聚成的类用8来标识,依次类推。

通过linkage函数计算之后,实际上二叉树式的聚类已经完成了。Z这个数据数组不太好看,可以用dendrogram(Z)来可视化聚类树。

[转载]MATLAB层次聚类分析法(转)

可以看到,产生的聚类树的每一层都是一个倒置的U型(或者说是个n型,~~),纵轴高度代表了当前聚类中两个子节点之间的距离。横轴上标记出了各个数据点索引下标。

稍微注意以下的是,dendrogram默认最多画30个最底层节点,当然可是设置参数改变这个限制,比如dendrogram(Z,0)就会把所有数据点索引下标都标出来,但对于成千上万的数据集合,这样的结果必然是图形下方非常拥挤。看你的应用目的了,随你玩~

(3)初步的聚类树画完后,还要做很多后期工作的,包括这样的聚类是不是可靠,是不是代表了实际的对象分化模式,对于具体的应用,应该怎样认识这个完全版的聚类树,产生具有较少分叉的可供决策参考的分类结果呢?这都是需要考虑的。

MATLAB中提供了cluster, clusterdata, cophenet, inconsistent等相关函数。

cluster用于剪裁完全版的聚类树,产生具有一定cutoff的可用于参考的树。

clusterdata可以认为是pdist,linkage,cluster的综合,当然更简易一点。

cophenet和inconsistent用来计算某些系数,前者用于检验一定算法下产生的二叉聚类树和实际情况的相符程度(就是检测二叉聚类树中各元素间的距离和pdist计算产生的实际的距离之间有多大的相关性),inconsistent则是量化某个层次的聚类上的节点间的差异性(可用于作为cluster的剪裁标准)。


 

附录:聚类分析源代码

 

  1. X=[11978 12.5 93.5 31908; 57500 67.6 238.0 15900];
  2. %T=clusterdata(X,0.9) %一次聚类法
  3. %%层次聚类法
  4. %Step1  寻找变量之间的相似性
  5. %用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore函数进行标准化。
  6. X2=zscore(X);  %标准化数据
  7. Y2=pdist(X2);  %计算距离(默认欧式距离)
  8. %Step2   定义变量之间的连接
  9. Z2=linkage(Y2);
  10. %Step3  评价聚类信息
  11. C2=cophenet(Z2,Y2);       %//0.94698
  12. %Step4 创建聚类,并作出谱系图
  13. T=cluster(Z2,6);
  14. H=dendrogram(Z2);
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页